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Matrices with nonnegative elements, which are nonstochastic but have 
stochastic powers, are considered. These matrices are characterized in the 
irreducible case and in the symmetric one. 

1. Introduction. In this paper we consider square matrices with nonnegative 

elements which themselves are not stochastic, but for which a certain power is 

stochastic. In §2 we deal with nonnegative irreducible matrices, and in §3 with 

nonnegative symmetric matrices. In each of these cases we obtain a characterization 

of  the nonstochastic matrices of  the corresponding class which have stochastic 

powers. Our characterizations are constructive and enable us to build effectively 

the corresponding matrices. A very special case of  our second result, the charac- 

terization of all 3 × 3 nonnegative symmetric matrices A which are nonstochastic, 

but for which A 2 is stochastic, was obtained earlier as a byproduct of the proof 

of  a certain matrix inequality [2, Remark 3 following Theorem 1]. 

The main tool used in this paper is the Perron-Frobenius theorem [1, p. 53]. 

Let A = (aij) be a n × n nonnegative irreducible matrix. By the Perron-Frobenius 

theorem, A has a dominant simple positive characteristic value ~ = ~(A). If  

at ,- '- ,  c~h = a are all the characteristic values of A with modulus ce, then (~k = ~(.0 k 
k = 1,. . . ,h, where co = e 2~i/h. If  h = 1 A is primitive. If  h > 1 A is cyclic o f  

index h. If  A is cyclic of index h, then there exists a permutation matrix P such that 

p A p  r = 

m D 

0 A1 0 0 

0 0 A2 0 0 \ 

\ 
\ 

\ 

\ 
0 0 0 Ah_ 1 

A h 0 0 

(1.1) 
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The null matrices in the main diagonal are squares of orders nk, k = 1, ..., h. 
(1.1) is the Frobenius normal form of A. Let rl, ..., r h be the characteristic values 
of PAP T corresponding respectively to ~1, "", ~h. rh is positive (r h > 0). Write 

r h = z  14 - . . . 4 - z h ,  

where Zk is a vector of order nk, and the symbol 4- indicates direct sum. (If 
u = (ul, . . .um) and v = (vl,-. . ,v,),  then u 4- v =(u l , ' " , um,v l ' . . , v , , ) ) .  We have 

r k = z t 4- (.okz2 4- (o2kz3 4- "" 4- oj(h-1)kzh,  k = 1,. . . ,h.  

We end this introduction by a definition. Let B = (b/y) be a nonnegative m × n 

matrix. I f  

bij = fl, i = 1,..., m, 
j = l  

then B is fl stochastic or generalized stochastic. If  fl = 1 then B is stochastic. 
We remark that usually this definition is given only for square matrices. However, 
for our purpose it is convenient to use it for rectangular matrices. 

2. Nonnegative irreducible matrices.  Let A be a nonnegative irreducible 
matrix which is not stochastic. In this section we obtain a necessary and sufficient 
condition for some power of A to be stochastic. 

THEOREM 1. Let A be a nonnegative irreducible square matrix and let m > 1 
be a positive integer. Let H be the cyclic permutation 

H =  (12,. . .  h), 

and let 

(2.1) H m = CIC2".  C, 

be the representation of H m as the product of disjoint cycles. A is not a stochastic 
matrix while A m is stochastic i f  and only i f  

(I) A is cyclic of index h, where (h, m) > 1. 

(II) There exist positive numbers fli, i =  1, . . . ,h, such that the matrices A i 
appearing in the Frobenius normal form (1.1) of A are respectively fldflt+l 
stochastic.(*) The numbers fl~fulfill the following two conditions: 

(A) They are not all equal. 
(B) Every two numbers with indices belonging to the same cycle in (2.1) are 

equal. 

Proof. First we prove that the conditions (I) and (II) are necessary. Let A be 

a nonnegative irreducible matrix which is not stochastic while A = is stochastic. 

* Here and in the sequel the indices are taken modulo h. 
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As A s is stochastic, 1 is the dominant characteristic value of A s and e=(1,  . . . ,  1) 
is a corresponding characteristic vecor. Returning to A, it follows that 1 is the domi- 
nant characteristic value of A. As A is not stochastic, e is not a characteristic vector 
of A. Assume A is primitive. Then 1 is a simple characteristic value of A m and the 
only characteristic vector of A s corresponding to the characteristic value 1 is 
the characteristic vector of A corresponding to 1. But as this vector is different 
from e, it follows that A cannot be primitive. Hence, A is cyclic and can be 
represented by the Frobenius normal form (1.1). As P A P  r is only a cogredient 

permutation of the rows and columus of A, we may change in the above consi- 
derations A and A m respectively with P A P  r and P A m P  r .  

Let cq , . . . ,  eh = 1 be all the characteristic values of P A P  r(or  of  A) with modulus 

1, and let r l , . . . ,  rh be the corresponding characteristic vectors. As quoted in §1 
we have 

(2.2) c~ k = co k, co = e z~i/h, k = 1 , . . . ,  h, 

(2.3) r k ~--- Z 1 4- (DkZ2 4- (D2kZ3 4- "'" 4- co(h - l )kzh ,  k = 1 , - . . , h .  

As e is a characteristic vector of  P A " P r c o r r e s p o n d i n g  to 1 while it is not a charac- 
teristic vector of P A P  r, there exist integers kt , ..., kt ," 1 =< kx < k2 "" < kz < h, 
l > 1, such that 

(2.4) co,,~, = o)mk2 . . . . .  comk,= 1, 

and also numbers d r ,  "- ,  d~ such that 

(2.5) dxrkl + d2rk~ + "" + dlrkz = e. 

(2.3) and (2.5) imply 

(2.6) Zl(dx + "'" n t- dr) 4- "'" 4- Zh(dlco (h -1 )k t  + . . .  + d , c o ( h - l ) k , )  = e. 

Let ei = (1, ..., 1), i = 1,.. . ,  h, be a vector of order nt. From (2.3), (2.6) and the fact 
that rh > 0 it follows that there exist positive numbers/~a, "",/3h such that 

(2.7) rh = flxel  4- f12e2 4 - ' "  -Jr flheh. 

As rh is a chracteristic vector of P A P  r corresponding to the characteristic value 1, 
we obtain from (1.1) and (2.7) 

p A p r r h  = B2Ale2 4- "'" 4- PhAh-teh 4- ~ lAhe l  = ~1el  4- "" 4- flhen. 

Hence, 

(2.8) Aiei+t  = ~-ff-~-~ e~, i = 1 , . . . , h .  
P i + I  

From (2.8) follows that A i is a//i//~+l stochastic matrix. 
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We have now to show that fit fulfill the conditions (A) and (B). PAPris  not 
stochastic and therefore not all the matrices At are stochastic. As At is fl~/fl,+ 
stochastic, it follows that not all the numbers fl~ are equal. (A) is thus proved. 
To prove (B) denote the blocks of  PAP r in the partitioning (t.1) by Aii, 
i,j = 1,..., h, and the blocks of pAmp r in the same partitioning by" Llt,A(m)j. We have 

(2.9) AiS = { At' j = i + 1 (mod h) 

0 , j ~ : i + l  (modh)  
and 

h 

(2.10) A}~ ") = ~ Aik, ak~k2 . . . . .  Ak, .- , ,  i" 
kt ,- . . ,km- t =1 

From (2.9) and (2.10) follows 

(2.11) 

As pAmp r is 

A!m')={~ t A i + l " ' ' ' ' A t + m - l ' , s  j = - i + m  (modh)  

, j ~ i + m  (modh). 

stochastic, all the matrices A (m) t, i+m are stochastic. As At is fit~fit+ 1 
stochastic, it follows from (2.11) that Atl~)+m is 

fli fli+X fl i+m-1 __ fit 

H e n c e ,  

(2.12) 

stochastic. 

fit = fli+~, i = 1, ...,h. 

The permutation H ~ carries i into i + m and therefore i and i + m belong to the 
same cycle in (2.1), and so (2.12) is equivalent to (B). (B) is thus proved, and the 
proof of (II) is established. 

We have already proved that A is cyclic of index h. To complete the proof of (I), 
we have to show that (h, m) > 1. This fact follows easily from (2.2) and (2.4). 
The proof of the necessity part of the theorem is completed. 

We now prove that the conditions (I) and (II) are sufficient. Let A be a matrix 
which fulfills the conditions (I) and (II). From (A) follows that PAP r, and therefore 
A too, is not stochastic. According to (2.11) the matrix A~."~+m is flt/flt+~ stochastic. 

~(m) is stochastic. Hence, PA~P r, and (B) is equivalent to fit = fit+m, and so "*t,t+m 
therefore A m is stochastic. The proof of Theorem I is thus completed. 

REMARK 1. We have 
H h = (1)(2)... (h), 

and so for m = h the condition (B) holds for any fit. In this case it is thus sufficient 
that the condition (A) holds. From this we conclude that if A is a nonstochastic 
cyclic matrix of index h and if A m is stochastic, then A s is also stochastic and so 
any power A rex, where ml = m (mod h). 
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REMARK 2. Let m and h be positive integers (m, h ) >  1. By the sufficient 
conditions of  Theorem 1 we can construct all the matrices A which are non- 

stochastic and cyclic of  order h, and for which A '~ is stochastic. As ( m , h ) >  1, 

there is more than one cycle in the representation (2.1), and so we can find positive 

numbers fl~, i = 1, . . . ,h,  for which both (A) and (13) hold. Let Ai, i = 1,--. ,h, be 

fli/fli+ 1 stochastic matrices chosen so that their dimensions fit the structure of  (1.1) 
and so that A is cyclic of  index h. Using the Aj's, we construct A according to (1.1). 

3. Nonnegative symmetric matrices. Let A be a nonnegative symmetric matrix 
which is not stochastic. In this section we obtain a necessary and sufficient con- 
dition for some powers of  A to be stochastic. 

Let us first define a class of matrices 9~. A matrix A belongs to the class 9~ 
if  and only if A is a n × n nonnegative symmetric matrix, A is not stochastic 

and there exists a natural number m for which A s is stochastic. 
Let A eg~ n . A s is thus stochastic while A is not stochastic. It  is necessary that 

the multiplicity of  the dominant characteristic value of A m is greater than the 

multiplicity of  the dominant characteristic value of A. Hence, m is even. As the 
multiplicity of  the dominant characteristic value of  A m is equal for all the even 

re's, it follows that i fA E 9.I,, then A s is stochastic if and only if m is even. 

In the following theorem we characterize the classes 9~, by a recursive procedure. 
The structure of  the class 9~ is determined by the structure of  the classes 9.Ira, 

m < n. As the class 9~ 1 is void, we can by this procedure determine the structure 
of  9~ for any n. 

THEOREM 2. Let A be a n × n matrix. 

(1) I f  A is reducible, then Ae9~, i f  and only i f  there exists a permutation 
matrix P such that 

Bn  - k 

k is an integer for which the inequality 

n 
(3.2) - -  < k < n 

2 = 

holds. B k and Bn_ k are respectively k × k and (n - k )×(n  - k) matrices, and at 
least one of the following two conditions 

(3.3) 

holds. I f  only one of these conditions holds, then the matrix for which the condition 
does not hold is symmetric and stochastic. 
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(2) I f  A is irreducible, then Aeg.l, if and only if there exists a permutation 
matrix P such that 

(3.4) A = pr  p. 
A~ 0 

0 indicates square null matrices, k is an integer for which the inequality 

n 
(3.5) -~- < k < n 

holds. A1 is a k × ( n -  k) matrix [ ( n -  k)/k] 1/2 stochastic and its transposed 
AT is [k/(n - k)] 1'2 stochastic. 

Proof of (1). First we prove the necessity part. Let A be a reducible matrix 
belonging to 9~,. As A is reducible and symmetric, there exists a permutation 
matrix P for which (3.1) holds, where Bk and B,_ k are symmetric matrices. It is 
obvious that P can be chosen so that (3.2) holds. We have 

0 ] 
A 2 = p T  p .  

2 
n n - k  

As Aeg~,,  A 2 is stochastic and therefore Bk 2 and 2 Bn-k are both stochastic. As A is 
nonstochastic, at least one of the two matrices B k and Bn_ k is nonstochastic. For 
the matrix which is nonstochastic the corresponding condition in (3.3) holds. 
I f  the other matrix is also nonstochastic, then (3.3) holds for this matrix too. 
If  the other matrix is stochastic, then it is symmetric and stochastic. 

It is easy to verify that the conditions are also sufficient. 

Proof of (2). Let us begin with the necessity part. Let A be an irreducible 
matrix belonging to 92[,. According to Theorem 1, A is cyclic. As A is symmetric, 
it is cyclic of index 2 and so there exists a permutation matrix P for which (3.4) 
holds. It is obvious that P can be chosen so that (3.2) holds. According to 
Theorem 1 there exist positive numbers fll and f12, fll v~ f12, such that AI is fll/fl2 
stochastic and AT is fl2/fll stochastic. As A 1 is a k x (n - k) matrix, we obtain 

Hence, 

kf l2  fl-11" 

A1 is thus [(n - k)/k] 1/2 stochastic and AI r is [k/(n - k)]l/2stochastic. As fll # f12, 
it follows that the sign of equality in the lefthand side of (3.2) does not hold, and 
so (3.5) holds. 
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The sufficiency part follows by direct computation of PA 2pr. The proof o f  

Theorem 2 is completed. 
We shall now discuss the structure of  the classes 9~ n for n up to 4. 

n " l .  

As already mentioned 9.I t is void. 
n m.~ 2 ,  

(1) A reducible. (3.2) implies k = 1, n - k = 1. As 9~ t is void, the condition 
(3.3) cannot be fulfilled, and so there are no reducible matrices in 9~2. 

(2) A irreducible. No natural k exists for which (3.5) holds, and so there are 
no irreducible matrices in 9.I2. 
Conclusion: 9.12 is void. 
n = 3 .  

(1) A reducible. (3.2) implies k = 2, n - k = 1. As the classes 921 and 9.I2 are 
void, the condition (3.3) can not be fulfilled, and therefore there are no reducible 

matrices in 993. 
(2) A irreducible. (3.5) implies k = 2, n - k = 1. At is a 2 × 1, l /x/2 stochastic 

matrix, and A has the following form 

(3.6) 

m 

0 

A = p r  0 

1 

,/5 
1 

m 

1 

1 
- -  p .  

0 

m 

There exists 3 distinct matrices of the the form (3.6). 
Conclusion: 9~ 3 includes precisely the three matrices given by (3.6). 
From this conclusion follows the result mentioned in the introduction. 

n - - 4 .  
(1) A reducible. (3.2) implies k = 2 ; 3  and so n -  k = 2 ; 1  respectively. 

As 9.I2 is void, there remains only the possibility k = 3, n - k = 1. Let B3 be one 
of the three matrices belonging to 993. A has the following form 

(3.7) A = p r  

0 

B 3 0 

0 

0 0 0 1 

P. 
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There are 12 distinct matrices of the form (3.7). 

(2) A irreducible. (3.5) implies k = 3, n - k = 1. At is a 3 × 1 matrix, 
stochastic, and A has the following form 

B 

(3.8) A = p r  

1 
0 0 0 ~-~ 

1 
0 0 0 ~-~ 

1 
0 0 0 ~ _  

43 

1 1 1 

11fg 

P. 

There are 4 distinct matrices of the form (3.8). 

Conclusion: 9I, includes 12 reducible matrices given by (3.7) and 4 irreducible 
matrices given by (3.8). 
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